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LEITER TO THE EDITOR 

A systematic way of converting infinite series into infinite 
products 

I J Zucker 
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, U K  

Received 12 September 1986 

Abstract. It is shown how to display q-series in the forms Z ( * l ) n q ( k n + ' ) 2  and 
~( - l )n in* ' ) /2q ikn+' ) *  as infinite products. Systematic ways of expanding q-series and 
q-products into other series and products are also given. A method for determining the 
independence, or otherwise, of different q-series is discussed. 

In many models in lattice statistics exact solutions of certain properties appear as 
infinite products of the sort that occur in the expansion of elliptic functions, e.g. Baxter 
et a1 (1975), Baxter (1980) and Pearce (1985). Although infinite products are easily 
dealt with using computers, it is often desirable to find a series expansion of the 
parameter involved, in which case expressions in terms of infinite series may be 
preferred. Here, it will be shown how to convert infinite series that occur in the theory 
of elliptic functions into infinite products, thus indicating how the reverse procedure 
might be accomplished. This will be demonstrated in several cases. Relations between 
infinite series and infinite products have an honourable history starting with Euler and 
Gauss and first studied systematically by Jacobi. Some of these results will be gen- 
eralised and new ones obtained. Inevitably a new notation will be introduced, but 
relations between the new and conventional notations will be given. A method will 
be described by which the independence of various series can be determined. 

Our series notation is as follows. Let 

where Z implies summation over all n from -a to +W. The following properties of 
these functions are easily deduced. If k and 1 are not relatively prime but have a 
common factor r, then for all the functions, 

(2) 

defined by (1) 

f( rk, r l )  =f( k, 1 : qr2). 

In conventional notation three &series often occur. These are 

m 02 IC e3= c qn2 e4= C ( - i )qn2 e2= c q ( n - l / 2 ) 2  

-cr: -02 -02 

In the new notation 

e3 = e( i ,  0) e4= e ( i ,  0) e2 = e( 1, i). 
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etc. 
The reflection properties are: 

O ( k , I ) = B ( k , k - Z )  8 ( k ,  I )  = -e@, k- I) 
dk, 0 = -#4k k - I )  $(k, Z)=&(k, k - I ) .  

Our products notation is as follows. Let 

Q( k, I )  = n( 1 - qk" - ' )  Q( k, I )  = n( 1 + q k " - ' )  

a r k ,  r l )  = Q ( k ,  1 :  9 7  

where II implies product over all n from 1 to CO. 

Q( rk, r l )  = Q( k, I : q') 

In conventional notation the following products often occur. 

Q o = n ( l - q 2 " )  Q 1 =  no + q 2 " )  

Q2 = n( 1 + q2n-l) 

Qo = Q(2,O) Qi = O(2,O) Q 2 =  Q(2 ,1 )  

Q3 = n ( l -  q2"-') .  

In this new notation 

A useful identity is that Q1Q2Q3 = 1 .  
The expansion properties are: 

Q(k I )  = Q ( 2 k  I)Q(2k, k + l )  = Q ( 3 k  I)Q(3k, k+l)Q(3k,2k+ 1 ) .  . 
and similarly with 6. 
The combining property is 

Q ( k ,  mk, I )  = 00s 21) = Q(S I :  q2) .  

Q(k ,  k) = 0 

The reduction properties are: 

O(k, k) = 2 Q ( k  0) 

Q(S I ) = ( l - q k - ' ) Q ( k ,  I - k )  Q(k ,  I )  = ( 1  + qk- ' )Q(k ,  I - k). 
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The expansion properties are: 

~ $ ( k , I ) = 8 ( 2 k , I ) + 8 ( 2 k ,  k + l )  ~ ( k , I ) = 8 ( 2 k , I ) - 8 ( 2 k , k + I )  ( 3 )  

e( k, I )  = 6(2k,  I )  + 8(2 k, k + I )  = 8(3k,  I )  + 8(3k,  k + I )  + 8(3k ,  2k + I )  
= e(  nk, I )  + e(  nk, k + I )  + . . . + e(  nk, ( n  - 1 )  k + Z) ( 4 )  

8 (k , I )=B(2k ,  Z)-8(2k,  k + l ) =  8(3k, I ) - 8 ( 3 k , k + I ) + 8 ( 3 k , 2 k + I )  

For the conversion of series into products, we start with the fundamental Jacobi identity 
which may be written 

X n q n 2 = n ( l  -q2")(1 +xqZ"-')(l +x-lq2"-'). (14)  

8 ( k ,  I)=q"Q(2k,O)Q(2k, k+2I)Q(2k,  k-21))qk (15) 

8(k, I)=q"Q(2k,O)Q(2k, k+2I )Q(2k ,  k-21) lqk  (16) 

Replacing q by qk2 ,  x by qZk' and multiplying both sides by q12, we immediately obtain 

where ) q k  implies that all the previous functions have argument q k  in place of q. Using 
similar but more complicated substitutions we deduce that 
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4(k 1 )  = d 2 Q ( 4 S  0)0(4k, 2k)Q(4k, k -21) 
x 0(4k, 3k-21)Q(4k, k+21)Q(4k, 3k+21)lqk (17) 

&k, 1 )  = q"Q(4k, 0)0(4k,  2k)0(4k, k - 21) 
x Q ( 4 S  3k-21)Q(4k, k+21)Q(4k, 3k+21)lqk. (18) 

Is the inverse problem solvable? That is, can Q(k,  I) be expressed in terms of 
various q-series? It seems unlikely, though the following result is simply obtained. 
From (16) we may write 

a, 1) = q w ,  0 ) ~ ( 1 2 ,  ~ ) Q w ,  4 ) ~  

= q ~ ( 3 ,  0 ) ~ ( 3 , 2 ) ~ ( 3 , 1 ) 1 ~ 2 4  (using (9)) 
= q ~ ( 1 , 0 : q 2 4 )  (using (10)). 

Thus in expanded notation this is 

qn( 1 - q24n) (19) 
which is Euler's result. This so far seems the only case in which a single infinite 
product is expressible as a single infinite series. However, many combinations of 
infinite products appearing in lattice statistics solutions may be expressed as ratios of 
infinite series. For example, consider (Baxter 1980) 

1 (-1)nq(6n+1)' = 

By using (16) and expanding 8(lO, 1) and e( l0 ,3)  it is easily shown that 

Actually this result is implicit in Hardy and Wright (1960, theorems 355 and 356) but 
without the q1l5 they do not have the pleasing form exhibited above. Similarly an 
infinite product result found in Baxter et a1 (1975) is expressible as a ratio of two 
series. This is 

A further result relating a product given by Baxter (1980) to a ratio of series is 

This result, however, belongs to the theory of derivatives of B(k, I); that is 
ef(s I )  = C (kn + I )q(kn+')2 

etc, which has not yet been fully developed. The one well known result is Jacobi's 
famous theorem which in conventional notation is (Hardy and Wright 1960) 

W n (1 - q n ) 3  = 1 (-1)"(2m+ 1)fpm+1)/2. 

4 Q v 3 , O )  = @'(4,1) 

m=O 

In the notation developed above this appeared in the more symmetric form 
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i.e. 

and thus (22) was found. Recently, however, several new relations similar to Jacobi's 
but independent of his have appeared or will appear in print: Glasser and Zucker 
(1980), Borwein and Borwein (1986), Borwein and Zucker (1986), and we display 
them here in forms which are by no means unique: 

fl (l-q16n)3(1+q16n-8)3= (-1)n(4n+1)q(4n+1)2= 6 -' (431) (24) 

q n ( i - q 6 n ) 3 ( i - q 6 n - 3 ) 2 ( i + q 6 n ) 2 =  c ( 3 n + i ) q ( 3 n + 1 ) 2 = e ' ( 3 ,  1 )  (25) 

(26) 

@'(6, 1 )  (27) 

q n ( 1  -q6n)3(1+q 3 n  ) 2 -  -C  ( - 1 ) " ( 3 n +  l )q(3n+1)2=8'(3,  1 )  

q n ( 1  - q 48n ) 3 ( 1  - q48"-24)5 = c (6n + l )q (6n+1)2  = 

(25), (26) and (27) are not independent of one another. How this may be shown is 
indicated below. 

The many additive and multiplicative relations which exist among the conventional 
functions 0 2 ,  d3 and e4 may be easily demonstrated using (3)-( 13). For example, using 
(4) one has 

e ( i , o ) = e ( 2 , 0 ) + 8 ( 2 ,  i ) = e ( i , o :  q4)+e( i , ; ;  q4) 

e3 = e3(q4) + @2(q4). 

or, conventionally, 

Clearly in this simple case it is seen that the @-functions involved are not independent 
of one another, and that O(2,l) is expressible in terms of @ ( l ,  0). The question arises 
of how to ascertain in general when a given @(k, I )  is independent or not. Now this 
might be accomplished by manipulating (3)-(13). After some work it would be shown 
that @(3, l ) ,  8(3, l ) ,  @(3,2), 8(3,2) and @(4,1) are all expressible in terms of O ( 1 , O ) .  
However, 8(4,1)  does not succumb in a similar way, but it is not obvious why it should 
be regarded as a new independent series. The following analysis, however, makes it 
clear whenever a given series is linearly independent of another. Consider the Mellin 
transform o f f (  t )  defined by 

M , [ f ( t ) ] = &  lom t " ' f ( t )  dt. 

If in the &series considered e-' is written for q, then the Mellin transform of the 
@-series become a Dirichlet L-series (Zucker and Robertson 1976). For example 

~ , [ e ( i , 0 ) - 1 ] = 2 ( i - ~ * + 2 - ~ ~ + 3 - ~ .  . . ) = 2 ~ , ( 2 ~ ) .  (30) 

Ms[8(4, l ) ] = 1 - 2 s - 3 - 2 s - 5 - 2 s + 7 - 2 s . .  . = L , ( 2 s )  (31 )  

The Mellin transforms of J(1,O). . . @(4,1) are all expressible in terms of L,(2s) but 
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which is an L-series algebraically independent of L , .  It thus becomes immediately 
clear that 8(4, 1 )  is not expressible in terms of e( 1 , O ) .  It is for this reason that one 
can state that (25), (26) and (27) are not independent series whereas the others are 
since if we take Mellin transforms of (23)-(28) we obtain 

Ms6’(4, 1) = L4(2s  - 1)  

M*8’(4,1) = L-,(2s - 1 )  

(32) 

(33) 

~ , e y 3 , i )  = ~ ~ ( 2 s  - 1 )  

Ms8’(3, 1 )  = ( 1  +22-2”)L-,(2s - 1 )  

Ms0’(6, 1 )=(1+21-2’ )L- , (2~-  1 )  

Ms4’(6, 1 )  = L-24(2S - 1 ) .  (37) 

These results also enable one to evaluate many more three-dimensional lattice sums 
by the methods discussed by Glasser and Zucker (1980). For example 

= L 4 2 s  - 1)  (38) 

When s is an integer all the above results can be expressed in terms of algebraic 
numbers and powers of T. For example, for s = 1 ,  equation (39) gives 8 ~ / 6 .  A 
fuller report of these results will be given elsewhere. 

The author wishes to thank Jonathan M Borwein (Dalhousie University) for much 
stimulating correspondence. 
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